制作双语字幕的方案网上有很多,林林总总,不一而足。制作双语字幕的原理也极其简单,无非就是人声背景音分离、语音转文字、文字翻译,最后就是字幕文件的合并,但美中不足之处这些环节中需要接口api的参与,比如翻译字幕,那么有没有一种彻底离线的解决方案?让普通人也能一键制作双语字幕,成就一个人的字幕组?
如果视频不存在嘈杂的背景音,那么大多数情况下是不需要做人声和背景音分离的,但考虑到背景音可能会影响语音转文字的准确率,那么人声和背景音分离还是非常必要的,关于人声抽离,我们首先想到的解决方案当然是spleeter,但其实,阿里通义实验室开源的大模型完全不逊色于spleeter,它就是FRCRN语音降噪-单麦-16k,模型官方地址:
https://modelscope.cn/models/iic/speech_frcrn_ans_cirm_16k/summary
FRCRN语音降噪模型是基于频率循环 CRN (FRCRN) 新框架开发出来的。该框架是在卷积编-解码(Convolutional Encoder-Decoder)架构的基础上,通过进一步增加循环层获得的卷积循环编-解码(Convolutional Recurrent Encoder-Decoder)新型架构,可以明显改善卷积核的视野局限性,提升降噪模型对频率维度的特征表达,尤其是在频率长距离相关性表达上获得提升,可以在消除噪声的同时,对语音进行更针对性的辨识和保护.
需要注意的是该模型再Pytorch1.12上有bug,所以最好指定版本运行:
pip install pytorch==1.11 torchaudio torchvision -c pytorch
运行方式也很简单,通过pipeline调用即可
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
ans = pipeline(
Tasks.acoustic_noise_suppression,
model='damo/speech_frcrn_ans_cirm_16k')
result = ans(
'test.wav',
output_path='output.wav')
成功分离出人声,接着要做的就是语音转文字,这里选择faster-whisper,faster-whisper 是 OpenAI Whisper 模型的重新实现,使用了 CTranslate2,这是一个用于 Transformer 模型的快速推理引擎。相比于 openai/whisper,faster-whisper 的实现速度提高了 4 倍,同时内存占用更少。此外,faster-whisper 还支持在 CPU 和 GPU 上进行 8 位量化,进一步提高了效率.
pip install faster-whisper
随后编写转写代码:
def convert_seconds_to_hms(seconds):
hours, remainder = divmod(seconds, 3600)
minutes, seconds = divmod(remainder, 60)
milliseconds = math.floor((seconds % 1) * 1000)
output = f"{int(hours):02}:{int(minutes):02}:{int(seconds):02},{milliseconds:03}"
return output
# 制作字幕文件
def make_srt(file_path,model_name="small"):
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cuda":
model = WhisperModel(model_name, device="cuda", compute_type="float16",download_root="./model_from_whisper",local_files_only=False)
else:
model = WhisperModel(model_name, device="cpu", compute_type="int8",download_root="./model_from_whisper",local_files_only=False)
# or run on GPU with INT8
# model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")
segments, info = model.transcribe(file_path, beam_size=5)
print("Detected language '%s' with probability %f" % (info.language, info.language_probability))
count = 0
with open('./video.srt', 'w') as f: # Open file for writing
for segment in segments:
count +=1
duration = f"{convert_seconds_to_hms(segment.start)} --> {convert_seconds_to_hms(segment.end)}\n"
text = f"{segment.text.lstrip()}\n\n"
f.write(f"{count}\n{duration}{text}") # Write formatted string to the file
print(f"{duration}{text}",end='')
with open("./video.srt", 'r',encoding="utf-8") as file:
srt_data = file.read()
return "转写完毕"
这里通过convert_seconds_to_hms方法来把时间戳格式化为标准字幕时间轴.
这里字幕翻译我们依然使用大模型,依然是阿里通义实验室的CSANMT连续语义增强机器翻译-英中-通用领域-large,模型官方地址:
https://modelscope.cn/models/iic/nlp_csanmt_translation_en2zh/summary
该模型基于连续语义增强的神经机器翻译模型,由编码器、解码器以及语义编码器三者构成。其中,语义编码器以大规模多语言预训练模型为基底,结合自适应对比学习,构建跨语言连续语义表征空间。此外,设计混合高斯循环采样策略,融合拒绝采样机制和马尔可夫链,提升采样效率的同时兼顾自然语言句子在离散空间中固有的分布特性。最后,结合邻域风险最小化策略优化翻译模型,能够有效提升数据的利用效率,显著改善模型的泛化能力和鲁棒性.
依然是通过pipeline进行调用:
# 翻译字幕
def make_tran():
pipeline_ins = pipeline(task=Tasks.translation, model=model_dir_ins)
with open("./video.srt", 'r',encoding="utf-8") as file:
gweight_data = file.read()
result = gweight_data.split("\n\n")
if os.path.exists("./two.srt"):
os.remove("./two.srt")
for res in result:
line_srt = res.split("\n")
try:
outputs = pipeline_ins(input=line_srt[2])
except Exception as e:
print(str(e))
break
print(outputs['translation'])
with open("./two.srt","a",encoding="utf-8")as f:f.write(f"{line_srt[0]}\n{line_srt[1]}\n{line_srt[2]}\n{outputs['translation']}\n\n")
return "翻译完毕"
虽然字幕已经完全可以导入剪辑软件进行使用了,但是依然可以通过技术手段来自动化合并字幕,这里使用ffmpeg
# 合并字幕
def merge_sub(video_path,srt_path):
if os.path.exists("./test_srt.mp4"):
os.remove("./test_srt.mp4")
ffmpeg.input(video_path).output("./test_srt.mp4", vf="subtitles=" + srt_path).run()
return "./test_srt.mp4"
笔者已经将上面提到的技术集成到了一个完整的项目之中,项目地址:
https://github.com/v3ucn/Modelscope_Faster_Whisper_Multi_Subtitle
操作简单,无须思考:
生成的双语字幕效果: