gpt4 book ai didi

浮点数(小数)在计算机中如何用二进制存储?

转载 作者:撒哈拉 更新时间:2024-04-01 02:40:21 57 4
gpt4 key购买 nike

【版权声明】未经博主同意,谢绝转载!(请尊重原创,博主保留追究权) https://www.cnblogs.com/cnb-yuchen/p/18107586 出自【进步*于辰的博客】 。

注:为了阐述更加严谨,本篇文章中将使用一些二进制的相关概念,出自上篇博文.

前言 。

在解析Float类的源码时,我对MAX_VALUE/MIN_VALUE的值很好奇,它们是怎么来的?于是利用我所知的二进制知识,尝试运算。一开工就发现没辙,因为我压根不知道小数的二进制是怎样表示、又是如何存储的。于是寻得一方案:

启发博文:浮点数(小数)在计算机中如何用二进制存储?(转发).

这位博主的阐述专业且详细,下面我通过个人理解,尽量简明扼要地为大家阐明这个知识点.

正文 。

在开始之前,大家先看一张图。 Float 就是单精度,就是说 Float 变量由32位(4字节)二进制表示。现在大家对这张图有所疑惑,无妨,我要表达的意思是,小数的二进制由三部分组成,与整数完全不同。换言之,给我们一组小数的二进制,我们无法直接看出它的真值是多少。因此,需要使用一种纸面上的二进制数表现形式.

如何运算出这种纸面上的二进制数表现形式? 所谓纸面上,就是一目了然,也就是使用整数二进制的表现形式去表现小数。那位博主是这样说的:

二进制转换为十进制的方法就是各个位的数字与位权乘积之和.

什么是“位权”?这张图给了答案。 就是底数的指数幂.

答案很清楚了,可是如何运算浮点数的小数部分的二进制,难道使用如上“求和”的方法?当然可以,不过不太方便.

从另一位博主那儿“取经”得一方法:使用上图示例。整数部分照旧,是1011,将小数部分0.1875进行以下运算:

0.1875 * 2 = 0.3750 → 0
0.3750 * 2 = 0.7500 → 0
0.7500 * 2 = 1.5000 → 1
0.5000 * 2 = 1.0000 → 1

得0011.

结论:

将小数部分乘以2,取结果的整数部分,如此反复,直至结果为0,最后依次得到的整数部分就是小数部分的二进制.

PS:暂不懂其中原理,就挺好用.

补充一点:那位博主将100个 float 类型的0.1相加,最终结果不是10.0。 大家便可明了,无论二选一,0.1都是无限小数。无论单双精度,都无法表示完全,必然有所缺失或增加(四舍五入),故是10.000002.

成功了一半,可1011.0011只是11.1875在纸面上的二进制数表现形式.

浮点数(小数)在计算机中如何用二进制存储? 回到第一张图,小数的二进制由符号、指数、尾数三部分组成,这说明必然有一个公式,将这三部分进行运算,从而得到“真值”.

公式是这样的: 二进制中基数(又称“底数”)是2,自然不必考虑。小数内部构造的三部分正好与图中三个未知变量对应,下面我一一剖析。(以单精度为例) 。

符号部分占1位,即0/1。(PS:小数没有“补码”之说) 。

指数部分(8位)与尾数部分(23位)又是如何表示小数的?

我们来探讨一下,看到 m * ne 这样的公式,给你11.1875这个小数,你能想到哪些等式?

11.1875 = 111.875 * 10-1,m是111.875,n是10,e是 -1 11.1875 = 1.11875 * 101, m是1.11875,n是10,e是 1 ...... 。

有问题么?这里是二进制,n 是2,不是10,故等式不能这么写.

可是要满足如下等式,m 是多少?

11.1875 = m * 2-1 11.1875 = m * 21 ...... 。

看到这样的等式,大家是否似曾相识?没错,位运算,也就是这样:

11.1875 = m * 2-1 = m >> 1 11.1875 = m * 21 = m << 1 ...... 。

明白了么?

可这里有个问题,因为位运算移动的位数e是任意的,故 m 任意,则必然存在一个规范,用于限制e的值.

规范定义:

尾数部分用的是“将小数点前面的值固定为1的正则表达式”。 什么是正则表达式?按照特定的规则来表示数据的形式的表达式.

这样就清楚了,规范就是“将小数点左边第一位固定为1,其他为0”。如此,e就只有一个值.

PS:不过,对于那位博主将规范定义为“正则表达式”这一点,我的个人看法是,意思没错,可用词似乎不恰当,当时我就被误导了。当然,也可能是我的功底不扎实.

规范知道了,可尾数m是多少呢?大家在上文的阅读中有没有注意到一个细节?就是“纸面上的二进制数表现形式”那儿,我最后说了一句:“成功了一半”。成功在哪?又何出此言?

其实,小数在纸面上的二进制数表现形式就是 m * 2e 的结果。以11.1875为例:

11.1875 → 1011.0011

规范是“将小数点左边第一位固定为1,其他为0”,就是这样:

11.1875 → 1011.0011 = 1.0110011 << 3 = 1.0110011 * 23 。

这样,难道 m 是1.0110011?当然不是,那位博主已阐明:

因此,m 是01100110000000000000000。e 是3.

对应到小数的内部构造,11.1875的二进制是:

0 00000011 01100110000000000000000

这是正确答案吗?还不是.

运用以上方法,我们来计算一下0.1875的二进制:

0.0011						原始数值
1.1							左移使个位为 1
1.10000000000000000000000	确保小数点后有23位
10000000000000000000000		仅保留小数点后的部分

得出,m 是10000000000000000000000,e 是-3.

因此,0.1875的二进制是0 10000011 10000000000000000000000。(指数e使用的是“原码”,不是“补码”) 。

这样看来,似乎没有问题,可实际上指数部分还有点“门道”.

那位博主阐述道:

指数部分使用了“EXCESS系统表现”.

什么是“EXCESS系统表现”?那位博主已阐述得很清楚,我就不赘述了.

总结:

  • 11.1875的二进制是0 10000010 01100110000000000000000
  • 0.1875的二进制是0 01111100 10000000000000000000000

PS:

  1. 如果采用双精度,同理,只是二进制位数增加了而已。
  2. 那位博主运用 c++ 代码进行了验证,我把他提供的 code copy test 了一下,同样验证无误,只是目前我暂不知如何使用 java 进行验证,需要大家自行研究了。

本文完结.

上一篇:《二进制相关概念、运算与应用》.

最后此篇关于浮点数(小数)在计算机中如何用二进制存储?的文章就讲到这里了,如果你想了解更多关于浮点数(小数)在计算机中如何用二进制存储?的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

57 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com