- VisualStudio2022插件的安装及使用-编程手把手系列文章
- pprof-在现网场景怎么用
- C#实现的下拉多选框,下拉多选树,多级节点
- 【学习笔记】基础数据结构:猫树
图像增强方法在数字图像处理中占有重要地位,它能够有效提高图像的视觉效果,增强图像的细节信息,从而在医学、遥感、工业检测等多个领域发挥重要作用 。
1. 空间域增强方法 。
空间域增强方法是通过直接对图像像素进行操作来实现图像增强的技术。以下是几种常见的空间域增强方法:
1.1 直方图均衡化 。
直方图均衡化是一种简单且有效的图像增强方法,主要通过调整图像的灰度直方图,使得图像的灰度级分布更加均匀,从而提高图像的对比度 。
应用场景包括医学影像中的组织对比增强、卫星图像中的地物对比增强等 。
1.2 对比度拉伸 。
对比度拉伸通过扩大图像的灰度级范围来提高对比度。这种方法通常用于提高低对比度图像的视觉效果 。
例如,对于一个灰度级范围为 [𝑎,𝑏][𝑎,𝑏] 的图像,可以将其拉伸到 [0,255] 。
1.3 灰度变换 。
灰度变换通过对图像的灰度值进行非线性变换来实现图像增强。常见的灰度变换方法包括对数变换和幂次变换 。
对数变换公式:
应用场景包括提高低灰度图像的对比度、调整图像的亮度等 。
1.4 平滑滤波 。
平滑滤波通过平均化相邻像素的灰度值来减少图像的噪声,常见的平滑滤波器有均值滤波器和中值滤波器 。
均值滤波器:
应用场景包括去除图像中的随机噪声、平滑图像纹理等 。
1.5 锐化滤波 。
锐化滤波通过增强图像的边缘信息来提高图像的清晰度,常见的锐化滤波器有拉普拉斯滤波器和高通滤波器 。
拉普拉斯滤波器:
应用场景包括增强图像的细节信息、提高图像的边缘清晰度等 。
2. 频率域增强方法 。
频率域增强方法通过对图像的频率成分进行操作来实现图像增强。以下是几种常见的频率域增强方法:
2.1 傅里叶变换 。
傅里叶变换将图像从空间域转换到频率域,揭示出图像中的频率成分。通过对频率域的操作,可以实现图像的滤波和增强 。
二维离散傅里叶变换(DFT)的公式如下:
2.2 小波变换 。
小波变换通过将图像分解为不同尺度的子图像,实现对图像的多分辨率分析。它能够同时在时域和频域上进行局部化处理 。
离散小波变换(DWT)的公式如下:
应用场景包括图像压缩、图像去噪和图像增强等 。
2.3 高频增强滤波 。
高频增强滤波通过增强图像中的高频成分(即边缘和细节部分)来提高图像的清晰度。常见的高频滤波器有高通滤波器 。
高通滤波器的传递函数如下:
应用场景包括图像边缘增强、细节增强和纹理增强等 。
2.4 低频增强滤波 。
低频增强滤波通过保留图像中的低频成分(即平滑部分)来减少图像的噪声和不必要的细节。常见的低频滤波器有低通滤波器 。
低通滤波器的传递函数如下:
应用场景包括图像去噪、平滑和模糊处理等 。
3. 现代增强方法 。
现代增强方法利用先进的算法和技术来提高图像的质量和分辨率。以下是几种常见的现代增强方法:
3.1 超分辨率重建 。
超分辨率重建通过从低分辨率图像生成高分辨率图像,提升图像的细节和清晰度。常见的方法包括基于插值的方法、基于学习的方法和基于稀疏表示的方法 。
基于插值的方法通过插值算法(如双线性插值、双三次插值等)填充像素间的空隙来提高分辨率 。
基于学习的方法则利用深度学习网络(如卷积神经网络 CNN)从大量图像中学习低分辨率到高分辨率的映射关系 。
应用场景包括卫星图像处理、医学影像处理和视频监控等 。
3.2 图像去噪 。
图像去噪通过去除图像中的噪声,保留有用的图像信息。常见的方法包括高斯滤波、中值滤波、非局部均值滤波和基于深度学习的方法 。
基于深度学习的方法如卷积自编码器(Convolutional Autoencoder),通过训练网络学习去噪的过程 。
应用场景包括医学影像去噪、夜间拍摄图像处理和低光照图像处理等 。
3.3 图像修复 。
图像修复通过填补图像中缺失或损坏的部分,使图像恢复完整。常见的方法包括基于纹理合成的方法和基于深度学习的方法 。
基于深度学习的方法如生成对抗网络(GAN),通过生成器和判别器的对抗训练,实现图像的修复 。
应用场景包括老照片修复、文物保护和视频帧修复等 。
3.4 GANs(生成对抗网络)增强 。
生成对抗网络(GAN)通过两个神经网络(生成器和判别器)相互对抗,实现图像的增强和生成。GAN 具有生成逼真图像的能力,可以用于超分辨率重建、图像去噪、图像修复等任务 。
GAN 的基本架构由生成器和判别器组成,生成器生成假图像,判别器判断图像的真假,二者通过对抗训练不断提升图像质量 。
应用场景包括图像生成、图像转换、超分辨率重建、图像去噪和图像修复等 。
最后此篇关于算法金|深度学习图像增强方法总结的文章就讲到这里了,如果你想了解更多关于算法金|深度学习图像增强方法总结的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
滑动窗口限流 滑动窗口限流是一种常用的限流算法,通过维护一个固定大小的窗口,在单位时间内允许通过的请求次数不超过设定的阈值。具体来说,滑动窗口限流算法通常包括以下几个步骤: 初始化:设置窗口
表达式求值:一个只有+,-,*,/的表达式,没有括号 一种神奇的做法:使用数组存储数字和运算符,先把优先级别高的乘法和除法计算出来,再计算加法和减法 int GetVal(string s){
【算法】前缀和 题目 先来看一道题目:(前缀和模板题) 已知一个数组A[],现在想要求出其中一些数字的和。 输入格式: 先是整数N,M,表示一共有N个数字,有M组询问 接下来有N个数,表示A[1]..
1.前序遍历 根-左-右的顺序遍历,可以使用递归 void preOrder(Node *u){ if(u==NULL)return; printf("%d ",u->val);
先看题目 物品不能分隔,必须全部取走或者留下,因此称为01背包 (只有不取和取两种状态) 看第一个样例 我们需要把4个物品装入一个容量为10的背包 我们可以简化问题,从小到大入手分析 weightva
我最近在一次采访中遇到了这个问题: 给出以下矩阵: [[ R R R R R R], [ R B B B R R], [ B R R R B B], [ R B R R R R]] 找出是否有任
我正在尝试通过 C++ 算法从我的 outlook 帐户发送一封电子邮件,该帐户已经打开并记录,但真的不知道从哪里开始(对于 outlook-c++ 集成),谷歌也没有帮我这么多。任何提示将不胜感激。
我发现自己像这样编写了一个手工制作的 while 循环: std::list foo; // In my case, map, but list is simpler auto currentPoin
我有用于检测正方形的 opencv 代码。现在我想在检测正方形后,代码运行另一个命令。 代码如下: #include "cv.h" #include "cxcore.h" #include "high
我正在尝试模拟一个 matlab 函数“imfill”来填充二进制图像(1 和 0 的二维矩阵)。 我想在矩阵中指定一个起点,并像 imfill 的 4 连接版本那样进行洪水填充。 这是否已经存在于
我正在阅读 Robert Sedgewick 的《C++ 算法》。 Basic recurrences section it was mentioned as 这种循环出现在循环输入以消除一个项目的递
我正在思考如何在我的日历中生成代表任务的数据结构(仅供我个人使用)。我有来自 DBMS 的按日期排序的任务记录,如下所示: 买牛奶(18.1.2013) 任务日期 (2013-01-15) 任务标签(
输入一个未排序的整数数组A[1..n]只有 O(d) :(d int) 计算每个元素在单次迭代中出现在列表中的次数。 map 是balanced Binary Search Tree基于确保 O(nl
我遇到了一个问题,但我仍然不知道如何解决。我想出了如何用蛮力的方式来做到这一点,但是当有成千上万的元素时它就不起作用了。 Problem: Say you are given the followin
我有一个列表列表。 L1= [[...][...][.......].......]如果我在展平列表后获取所有元素并从中提取唯一值,那么我会得到一个列表 L2。我有另一个列表 L3,它是 L2 的某个
我们得到二维矩阵数组(假设长度为 i 和宽度为 j)和整数 k我们必须找到包含这个或更大总和的最小矩形的大小F.e k=7 4 1 1 1 1 1 4 4 Anwser是2,因为4+4=8 >= 7,
我实行 3 类倒制,每周换类。顺序为早类 (m)、晚类 (n) 和下午类 (a)。我固定的订单,即它永远不会改变,即使那个星期不工作也是如此。 我创建了一个函数来获取 ISO 周数。当我给它一个日期时
假设我们有一个输入,它是一个元素列表: {a, b, c, d, e, f} 还有不同的集合,可能包含这些元素的任意组合,也可能包含不在输入列表中的其他元素: A:{e,f} B:{d,f,a} C:
我有一个子集算法,可以找到给定集合的所有子集。原始集合的问题在于它是一个不断增长的集合,如果向其中添加元素,我需要再次重新计算它的子集。 有没有一种方法可以优化子集算法,该算法可以从最后一个计算点重新
我有一个包含 100 万个符号及其预期频率的表格。 我想通过为每个符号分配一个唯一(且前缀唯一)的可变长度位串来压缩这些符号的序列,然后将它们连接在一起以表示序列。 我想分配这些位串,以使编码序列的预
我是一名优秀的程序员,十分优秀!