- VisualStudio2022插件的安装及使用-编程手把手系列文章
- pprof-在现网场景怎么用
- C#实现的下拉多选框,下拉多选树,多级节点
- 【学习笔记】基础数据结构:猫树
之前学习和实际生产环境的flask都是用app.run()的默认方式启动的,因为只是公司内部服务,请求量不高,一直也没出过什么性能问题。最近接管其它小组的服务时,发现他们的服务使用Gunicorn + Flask的方式运行的,本地开发用的gevent的WSGIServer。对于Gunicorn之前只是耳闻,没实际用过,正好捣鼓下看看到底能有多少性能提升。本文简单记录flask在各种配置参数和运行方式的性能,后面也会跟其他语言和框架做个对比.
wrk支持用lua脚本对请求的响应结果进行验证,以下脚本对响应码和响应内容进行校验 。
wrk.method = "GET"
wrk.host = "127.0.0.1:8080"
wrk.path = "/health"
wrk.timeout = 1.0
response = function(status, headers, body)
if status ~= 200 then
print("Error: expected 200 but got " .. status)
end
if not body:find("ok") then
print("Error: response does not contain expected content.")
end
end
from flask import Flask
app = Flask(__name__)
@app.get("/health")
def health():
return "ok"
if __name__ == "__main__":
app.run(host="0.0.0.0", port=8080)
使用命令nohup python demo.py > /dev/null启动,以下为wrk测试结果,可以看到已经出现超时请求.
$ wrk -s bm.lua -t 4 -c2000 -d60s http://127.0.0.1:8080/health
Running 1m test @ http://127.0.0.1:8080/health
4 threads and 2000 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 65.47ms 81.07ms 1.99s 97.69%
Req/Sec 575.99 107.20 1.08k 66.71%
137538 requests in 1.00m, 22.82MB read
Socket errors: connect 0, read 114, write 0, timeout 144
Requests/sec: 2288.49
Transfer/sec: 388.86KB
from flask import Flask
from time import sleep
app = Flask(__name__)
@app.get("/health")
def health():
sleep(0.1)
return "ok"
if __name__ == "__main__":
app.run(host="0.0.0.0", port=8080)
wrk测试结果,不出所料性能会有所下降.
$ wrk -s bm.lua -t 4 -c2000 -d60s http://127.0.0.1:8080/health
Running 1m test @ http://127.0.0.1:8080/health
4 threads and 2000 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 201.90ms 239.99ms 2.00s 95.05%
Req/Sec 479.79 185.87 1.82k 68.19%
114440 requests in 1.00m, 18.99MB read
Socket errors: connect 0, read 2, write 0, timeout 1833
Requests/sec: 1904.45
Transfer/sec: 323.62KB
python -m pip install -U flask[async]
)from flask import Flask
import asyncio
app = Flask(__name__)
@app.route('/health')
async def health():
await asyncio.sleep(0.1)
return "ok"
if __name__ == "__main__":
app.run(host="0.0.0.0", port=8080)
wrk测试结果,性能相较于同步函数甚至还下降了,QPS几乎砍半,看来异步版Flask还有待增强.
$ wrk -s bm.lua -t 4 -c2000 -d60s http://127.0.0.1:8080/health
Running 1m test @ http://127.0.0.1:8080/health
4 threads and 2000 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 275.49ms 190.22ms 2.00s 95.46%
Req/Sec 242.86 104.25 720.00 65.91%
57896 requests in 1.00m, 9.61MB read
Socket errors: connect 0, read 48, write 0, timeout 611
Requests/sec: 964.31
Transfer/sec: 163.86KB
from gevent.pywsgi import WSGIServer
from flask import Flask
from time import sleep
app = Flask(__name__)
@app.route('/health')
def health():
sleep(0.1)
return "ok"
if __name__ == "__main__":
http_server = WSGIServer(('0.0.0.0', 8080), app)
http_server.serve_forever()
wrk测试结果,惨不忍睹,像是单线程在挨个处理请求,每个请求都会阻塞住.
$ wrk -s bm.lua -t 4 -c2000 -d60s http://127.0.0.1:8080/health
Running 1m test @ http://127.0.0.1:8080/health
4 threads and 2000 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 185.36ms 221.17ms 1.93s 96.30%
Req/Sec 5.54 3.39 10.00 46.55%
592 requests in 1.00m, 67.64KB read
Socket errors: connect 0, read 0, write 0, timeout 322
Requests/sec: 9.85
Transfer/sec: 1.13KB
from gevent.pywsgi import WSGIServer
from gevent import monkey
from flask import Flask
from time import sleep
monkey.patch_all()
app = Flask(__name__)
@app.route('/health')
def health():
sleep(0.1)
return "ok"
if __name__ == "__main__":
http_server = WSGIServer(('0.0.0.0', 8080), app)
http_server.serve_forever()
wrk测试结果,加上monkey patch后似乎也没什么作用.
$ wrk -s bm.lua -t 4 -c2000 -d60s http://127.0.0.1:8080/health
Running 1m test @ http://127.0.0.1:8080/health
4 threads and 2000 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 182.89ms 209.48ms 1.82s 96.07%
Req/Sec 5.55 3.50 10.00 47.89%
592 requests in 1.00m, 67.64KB read
Socket errors: connect 0, read 0, write 0, timeout 312
Requests/sec: 9.85
Transfer/sec: 1.13KB
from flask import Flask
from time import sleep
app = Flask(__name__)
@app.get("/health")
def health():
sleep(0.1)
return "ok"
if __name__ == "__main__":
app.run(host="0.0.0.0", port=8080)
运行命令。指定-k gevent。demo:app中的demo是代码文件名。--worker-connections默认为1000 。
gunicorn demo:app -b 0.0.0.0:8080 -w 4 -k gevent --worker-connections 2000
wrk测试结果。性能相较于默认启动方式有了接近10倍的提升,请求响应时间也很稳定,最大响应时间也只有310.48.
$ wrk -s bm.lua -t 4 -c2000 -d60s http://127.0.0.1:8080/health
Running 1m test @ http://127.0.0.1:8080/health
4 threads and 2000 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 126.18ms 9.52ms 310.48ms 84.68%
Req/Sec 3.98k 165.70 4.53k 77.34%
948506 requests in 1.00m, 143.83MB read
Requests/sec: 15799.31
Transfer/sec: 2.40MB
在t4c2000的wrk配置下,flask+unicorn的每个进程基本都占用了85+%的CPU,再提高就得加CPU核心数了,不过这样的性能已经能满足公司内部服务的需求了,而且实际业务中,短板更可能是网络IO.
这里也测测其它语言和框架,看看Flask在Gunicorn的加持下能否打出python的牌面.
上来先试试最熟悉的Go, version: 1.22.4,使用标准库。(编译打包出来就能直接运行,不需要jvm这样的虚拟机,也不需要python这样的解释器,更不需要docker这样的容器运行时,特喜欢Go这一点) 。
package main
import (
"fmt"
"net/http"
"time"
)
func MyHandler(w http.ResponseWriter, r *http.Request) {
time.Sleep(time.Millisecond * 100)
w.Write([]byte("ok"))
}
func main() {
http.HandleFunc("/health", MyHandler)
err := http.ListenAndServe("0.0.0.0:8080", nil)
if err != nil {
fmt.Println(err)
}
}
wrk结果如下,请求量是目前测试以来第一个突破百万,而且也没有timeout的出现。使用top观察资源消耗,CPU只占用了约30%,而且还只有一个进程.
$ wrk -s bm.lua -t 4 -c2000 -d60s http://127.0.0.1:8080/health
Running 1m test @ http://127.0.0.1:8080/health
4 threads and 2000 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 101.56ms 1.48ms 121.62ms 77.58%
Req/Sec 4.94k 191.07 5.05k 93.49%
1180108 requests in 1.00m, 132.80MB read
Requests/sec: 19643.94
Transfer/sec: 2.21MB
不断加大连接,直到系统平均负载到达4(虚拟机CPU核心数为4)。连接数加了10倍,QPS差不多也是10倍于Flask + Gunicorn。这时候实际上wrk也占用了不少CPU资源,服务端的性能并没到瓶颈.
$ wrk -s bm.lua -t 4 -c20000 -d60s http://127.0.0.1:8080/health
Running 1m test @ http://127.0.0.1:8080/health
4 threads and 20000 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 167.56ms 43.45ms 397.95ms 60.37%
Req/Sec 29.48k 8.84k 48.26k 63.05%
6867733 requests in 1.00m, 772.85MB read
Requests/sec: 114258.70
Transfer/sec: 12.86MB
Go的性能已经很不错了,就性能来说还不是Flask+Gunicorn能媲美的。再来试试号称性能并肩Go的FastAPI(官网features里面写的)。FastAPI版本:0.115.4 。
纯uvicorn启动,用的是同步函数.
from fastapi import FastAPI
import uvicorn
from fastapi.responses import PlainTextResponse
from time import sleep
app = FastAPI()
@app.get("/health")
def index():
sleep(0.1)
return PlainTextResponse(status_code=200,content="ok")
if __name__ == '__main__':
uvicorn.run(app, host="127.0.0.1", port=8080, access_log=False)
wrk测试结果,可以看到相当低下,甚至还不如flask的默认运行方式,超时请求数都过2w了.
$ wrk -s bm.lua -t 4 -c2000 -d60s http://127.0.0.1:8080/health
Running 1m test @ http://127.0.0.1:8080/health
4 threads and 2000 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 1.22s 438.35ms 1.95s 60.00%
Req/Sec 115.03 57.31 410.00 86.69%
23494 requests in 1.00m, 3.02MB read
Socket errors: connect 0, read 0, write 0, timeout 22894
Requests/sec: 390.92
Transfer/sec: 51.54KB
改用异步函数再试试.
from fastapi import FastAPI
import uvicorn
from fastapi.responses import PlainTextResponse
from time import sleep
import asyncio
app = FastAPI()
@app.get("/health")
async def health():
await asyncio.sleep(0.1)
return PlainTextResponse(status_code=200,content="ok")
if __name__ == '__main__':
uvicorn.run(app, host="127.0.0.1", port=8080, access_log=False)
wrk测试结果,可以看到性能好很多了,而且没有timeout。QPS是Flask默认启动方式的2倍,但实际性能应该不止2倍.
$ wrk -s bm.lua -t 4 -c2000 -d60s http://127.0.0.1:8080/health
Running 1m test @ http://127.0.0.1:8080/health
4 threads and 2000 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 484.53ms 63.18ms 654.48ms 61.26%
Req/Sec 1.09k 698.29 3.13k 63.78%
246744 requests in 1.00m, 31.77MB read
Requests/sec: 4106.80
Transfer/sec: 541.43KB
uvicorn支持指定worker数,这里设置为CPU核心数.
from fastapi import FastAPI
import uvicorn
from fastapi.responses import PlainTextResponse
from time import sleep
import asyncio
app = FastAPI()
@app.get("/health")
async def health():
await asyncio.sleep(0.1)
return PlainTextResponse(status_code=200,content="ok")
if __name__ == '__main__':
uvicorn.run(app="demo2:app", host="127.0.0.1", port=8080, access_log=False, workers=4)
wrk测试结果,响应时间还是非常稳的,完全没有timeout的情况,延迟还更低.
$ wrk -s bm.lua -t 4 -c2000 -d60s http://127.0.0.1:8080/health
Running 1m test @ http://127.0.0.1:8080/health
4 threads and 2000 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 164.52ms 13.57ms 273.27ms 73.49%
Req/Sec 3.05k 544.20 4.64k 68.67%
727517 requests in 1.00m, 93.73MB read
Requests/sec: 12123.17
Transfer/sec: 1.56MB
gunicorn也支持uvicorn,看看fastapi在gunicorn的加持下会有怎样的性能表现.
gunicorn demo2:app -b 127.0.0.1:8080 -w 4 -k uvicorn.workers.UvicornWorker --worker-connections 2000
wrk测试结果,相较于unicorn运行方式,性能提升并不多.
$ wrk -s bm.lua -t 4 -c2000 -d60s http://127.0.0.1:8080/health
Running 1m test @ http://127.0.0.1:8080/health
4 threads and 2000 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 146.43ms 21.21ms 263.13ms 69.52%
Req/Sec 3.43k 508.71 4.88k 71.40%
818281 requests in 1.00m, 105.35MB read
Requests/sec: 13620.16
Transfer/sec: 1.75MB
之前用过一段时间Sanic,也是个python异步框架,版本:24.6.0 。
from sanic import Sanic
from sanic.response import text
import asyncio
app = Sanic("HelloWorld")
@app.get("/health")
async def hello_world(request):
await asyncio.sleep(0.1)
return text("ok")
if __name__ == "__main__":
app.run(host="127.0.0.1", port=8080, fast=True, debug=False, access_log=False)
wrk测试结果。虽然QPS比FastAPI高,但是有timeout的情况,不是很稳定.
$ wrk -s bm.lua -t 4 -c2000 -d60s http://127.0.0.1:8080/health
Running 1m test @ http://127.0.0.1:8080/health
4 threads and 2000 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 104.05ms 45.30ms 1.82s 99.59%
Req/Sec 4.84k 538.65 5.07k 95.98%
1154792 requests in 1.00m, 115.64MB read
Socket errors: connect 0, read 0, write 0, timeout 88
Requests/sec: 19218.08
Transfer/sec: 1.92MB
openresty基于nginx,通过集成lua,也可以用来写api。配置如下,只是增加了一个location,稍微调整下nginx的参数 。
worker_processes auto;
worker_cpu_affinity auto;
events {
worker_connections 65535;
}
http {
include mime.types;
default_type application/octet-stream;
access_log off;
sendfile on;
keepalive_timeout 65;
server {
listen 8080 deferred;
server_name localhost;
location /health {
content_by_lua_block {
ngx.sleep(0.1)
ngx.print("ok")
}
}
location / {
root html;
index index.html index.htm;
}
error_page 500 502 503 504 /50x.html;
location = /50x.html {
root html;
}
}
}
wrk测试结果,和Go语言相当.
$ wrk -s bm.lua -t 4 -c2000 -d60s http://127.0.0.1:8080/health
Running 1m test @ http://192.168.0.201:8080/health
4 threads and 2000 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 101.43ms 1.62ms 136.59ms 88.97%
Req/Sec 4.94k 213.51 5.33k 92.65%
1178854 requests in 1.00m, 211.36MB read
Requests/sec: 19619.86
Transfer/sec: 3.52MB
top观察openresty的cpu占用并不高,加大连接再试试。连接数达到25000后,系统平均负载已经基本满了,而且wrk也占用了不少CPU资源。和Go差不多,并没有到服务端的性能瓶颈,而是受到系统资源限制.
$ wrk -s bm.lua -t 4 -c25000 -d60s http://127.0.0.1:8080/health
Running 1m test @ http://127.0.0.1:8080/health
4 threads and 25000 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 149.17ms 36.61ms 659.40ms 71.22%
Req/Sec 41.00k 6.64k 59.03k 65.95%
9330399 requests in 1.00m, 1.63GB read
Requests/sec: 155277.58
Transfer/sec: 27.84MB
整理下测试数据汇总成表格如下 。
项目 | 总请求量 | 每秒请求量 | 平均响应时间 | 最大响应时间 | 备注 |
---|---|---|---|---|---|
Flask-no sleep | 137538 | 2288.49 | 65.47ms | 1.99s | 有响应超时情况 |
Flask-同步方式 | 114440 | 1904.45 | 201.90ms | 2.00s | 有响应超时情况 |
Flask-异步函数 | 57896 | 964.31 | 275.49ms | 2.00s | 有响应超时情况 |
Flask+gevent | 592 | 9.85 | 185.36ms | 1.93s | 有响应超时情况 |
Flask+gevent(monkeypatch) | 592 | 9.85 | 182.89ms | 1.82s | 有响应超时情况 |
Flask+gevent+unicorn | 948506 | 15799.31 | 126.18ms | 310.48ms | |
Golang | 1180108 | 19643.94 | 101.56ms | 121.62ms | |
Golang | 6867733 | 114258.70 | 167.56ms | 397.95ms | wrk的配置为t4c20000 |
FastAPI-同步函数 | 23494 | 390.92 | 1.22s | 1.95s | 有响应超时情况 |
FastAPI-异步函数 | 246744 | 4106.80 | 484.53ms | 654.48ms | |
FastAPI-多worker | 727517 | 12123.17 | 164.52ms | 273.27ms | |
FastAPI+Gunicorn | 818281 | 13620.16 | 146.43ms | 273.27ms | |
Sanic | 1154792 | 19218.08 | 104.05ms | 1.82s | 有响应超时情况,不是很稳定 |
OpenResty | 1178854 | 19619.86 | 101.43ms | 136.59ms | |
OpenResty | 9330399 | 155277.58 | 149.17ms | 659.40ms | wrk的配置为t4c25000 |
根据测试结果,测试的三个Python Web框架中,Flask+gevent+unicorn综合最佳,不低的QPS,而且没有请求超时的情况,也不需要将代码修改成异步方式。Sanic的QPS虽高,但是有响应超时的情况,说明并不稳定,而且代码需要是异步的。FastAPI+Gunicorn的表现也不差,在不使用Gunicorn的情况下也能提供不错的性能,但代码同样需要改成异步方式。对于Sanic和FastAPI,Gunicorn的加持并不必要,而Gunicorn对Flask的性能提升至少7倍,而且能避免请求超时的情况,生产环境下应该尽量使用Gunicorn来运行Flask.
Go比各个Python框架的性能都更好,资源占用也更低,运行方式还更简单,不需要依赖编程语言环境和其他组件,非要说缺点的话就是开发没有Python快.
OpenResty的性能在测试中是最高的,主要是nginx本身性能良好。缺点是开发更麻烦。虽然是用lua开发,但lua作为动态语言,既不如Python极其灵活,还有动态语言本身代码不够清晰的缺点。以前尝试过用openresty实现一个crud服务,后来连自己都懒得维护就放弃了,干脆只用来当网关.
鱼与熊掌不可兼得,开发速度跟运行速度往往相斥,除非代码以后都是AI来写。就公司目前这服务的使用情况来说,Flask+Gunicorn的性能已经足够,还不需要改代码,实乃社畜良伴。而且现在啥都上k8s了,服务扩展也简单,性能不够就加实例嘛 😃 。
最后此篇关于[python]Gunicorn加持下的Flask性能测试的文章就讲到这里了,如果你想了解更多关于[python]Gunicorn加持下的Flask性能测试的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
我尝试了几乎所有命令来杀死 gunicorn 服务器。但没有任何效果。我怎样才能杀死这些进程并释放 80 端口 12652 ? Ss 0:00 sudo gunicorn -b
我正在使用 Apache Airflow,发现 gunicorn-error.log 的大小在 5 个月内增长了超过 50 GB。大多数日志消息都是 INFO 级别的日志,例如: [2018-05-1
我正在使用 在 Digital Ocean 上运行 django gunicorn 和 nginx . Gunicorn 用于为静态文件提供 django 和 nginx。 通过网站上传文件后,我无法
我正在使用 Django 1.8,我想用 gunicorn 运行我的应用程序。 我可以从命令行绑定(bind)到我的 IP 运行它: gunicorn myapp.wsgi:application -
我们正在使用 https://github.com/tiangolo/uvicorn-gunicorn-fastapi-docker FastAPI 并且能够使用 gunicorn 日志文件自定义我们
我在 docker 上的 centos7 上运行 Airflow 1.8,但我的网络服务器无法访问浏览器。我通过pip2.7安装了airflow。 Flower ui 显示良好,initdb 运行连接
gunicorn.service cannot open WorkingDirectory and the gunicorn executable. I think it's about per
任何想法为什么我的 gunicorn 服务器无法启动? jeffy@originaldjangster:~$ sudo /home/jeffy/django_files/django_test_ven
我已经安装了gunicorn,但是没有找到gunicorn命令: # pip3.4 install gunicorn Requirement already satisfied (use --upgr
我在有监督的ginicorn部署我的django项目。 我在virtualenv中安装了gunicorn,添加到INSTALL_APPS中。 命令./manage.py run_gunicorn -b
我成功安装了gunicorn: remote: -----> Removing .DS_Store files remote: -----> Python app detected remote: -
Systemd 和 Gunicorn 需要某种 wsgi 文件作为 ExecStart 的最后一个参数:http://docs.gunicorn.org/en/latest/deploy.html?h
我正在尝试将基本应用程序部署到 Amazon EC2使用 Django , Gunicorn , 和 Nginx .我有应用 git clone进入我的AWS Ubuntu实例并正在运行 Django
在更新为使用小型模型中的 spacy_en_core_web_lg 后,我的 fastapi 服务器内存不足。 当运行 fastapi 时,会生成 4 个 gunicorn worker,并且根据内存
我有一个基于这个的 ansible 配置虚拟机 https://github.com/jcalazan/ansible-django-stack但出于某种原因,尝试启动 Gunicorn 会出现以下错
我关注 this如何在 Ubuntu 18.04 指南中使用 Postgres、Nginx 和 Gunicorn 设置 Django。 我创建了以下文件 .socket sudo nano /etc/
我正在尝试按照此 [链接][1] 在 Digital Ocean 上部署简单的 Django 应用程序用 gunicorn 实现它的抛出错误 gunicorn.service: Failed with
这里我想问你,用python运行gunicorn uvicorn,和默认从tiangolo有什么区别? 我尝试使用 JMeter 对这些进行压力测试具有线程属性: 从这些,我得到了结果:: 从上面我尝
因此,我有一个简单的 Flask API 应用程序,它运行在运行 tornado worker 的 gunicorn 上。 gunicorn 命令行是: gunicorn -w 64 --backlo
我已经使用 Gunicorn + Nginx + Supervisor 部署了一个 Django 1.6 应用程序。一切正常,但我的 Gunicorn error.log 一直在发送错误。该文件很大,
我是一名优秀的程序员,十分优秀!