- VisualStudio2022插件的安装及使用-编程手把手系列文章
- pprof-在现网场景怎么用
- C#实现的下拉多选框,下拉多选树,多级节点
- 【学习笔记】基础数据结构:猫树
我们使用scikit-learn进行机器学习的模型训练时,用到的数据和算法参数会根据具体的情况相应调整变化, 。
但是,整个模型训练的流程其实大同小异,一般都是加载数据,数据预处理,特征选择,模型训练等几个环节.
如果训练的结果不尽如人意,从数据预处理开始,再次重新训练.
今天介绍的Pipeline(中文名称:流水线),是一种将多个机器学习步骤整合在一起的工具.
它可以帮助我们简化了机器学习过程.
在 scikit-learn 中,Pipeline就像是一个工业生产流水线,把数据预处理、特征选择、模型训练等多个环节按顺序连接起来.
例如,一个典型的机器学习流程可能包括数据标准化、主成分分析(PCA)进行特征提取,最后使用一个分类器(如支持向量机)进行分类.
在没有Pipeline流水线的时候,你需要分别对每个步骤进行处理,手动将一个步骤的输出传递给下一个步骤。而Pipeline允许你把这些步骤封装到一个对象中,以更简洁和高效的方式来处理整个机器学习流程.
从代码角度看,流水线是由一系列的(key, value)对组成.
其中key是一个自定义的名称,用于标识步骤; 。
value是一个实现了fit_transform方法的 scikit-learn 转换器(用于数据预处理和特征提取等),或者是一个仅实现了fit方法的估计器(用于模型训练和预测).
使用Pipeline能带来的最大的好处就是简化机器学习模型的训练流程, 。
我们不用在每次训练模型或者进行预测的时候,手动地逐个调用数据预处理、特征工程和模型训练的步骤.
比如下面这个示例,没有Pipeline时:
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
import numpy as np
# 生成一些模拟数据
X = np.random.rand(100, 1)
y = 2 * X + 1 + 0.1 * np.random.randn(100, 1)
# 数据标准化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 多项式特征扩展
poly = PolynomialFeatures(degree = 2)
X_poly = poly.fit_transform(X_scaled)
# 线性回归模型训练
model = LinearRegression()
model.fit(X_poly, y)
而使用流水线,代码可以简化为:
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
import numpy as np
# 生成一些模拟数据
X = np.random.rand(100, 1)
y = 2 * X + 1 + 0.1 * np.random.randn(100, 1)
pipeline = Pipeline([
('scaler', StandardScaler()),
('poly', PolynomialFeatures(degree = 2)),
('model', LinearRegression())
])
pipeline.fit(X, y)
这样不仅可以减少代码量,还能使代码结构更加清晰.
在机器学习中,数据泄露是一个严重的问题.
例如,在进行数据预处理和模型选择时,如果不小心将测试数据的信息泄露到训练数据的处理过程中,会导致模型在测试集上的评估结果过于乐观.
Pipeline可以确保每个步骤只使用它应该使用的数据,在Pipeline中,训练数据按照步骤依次处理,测试数据也会以相同的顺序和方式处理,这样就可以很好地避免数据泄露.
而在交叉验证过程中,Pipeline会自动将每个折叠(fold)的数据按照正确的步骤顺序进行处理.
如果手动处理各个步骤,很容易在交叉验证的过程中错误地使用了全部数据进行预处理,从而导致数据泄露.
可以将整个Pipeline当作一个模型来进行参数调整.
例如,对于一个包含数据预处理和分类器的Pipeline,可以通过网格搜索(Grid Search)或者随机搜索(Random Search)等方法来同时调整预处理步骤和分类器的参数.
再比如一个包含标准化和支持向量机分类器的Pipeline,我们可以同时调整标准化的参数(如with_mean和with_std)和支持向量机的参数(如C和gamma)来找到最佳的模型配置.
示例是最好的学习资料,下面使用scikit-learn 库中的 datasets 来分别构造回归、分类和聚类问题的Pipeline示例.
此示例先对糖尿病数据进行标准化,然后使用线性回归模型进行房价预测.
from sklearn.datasets import load_diabetes
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
# 加载糖尿病数据集
diabetes = load_diabetes()
X = diabetes.data
y = diabetes.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
pipeline = Pipeline([
('scaler', StandardScaler()),
('model', LinearRegression())
])
# 在训练集上训练模型
pipeline.fit(X_train, y_train)
# 在测试集上进行预测
y_pred = pipeline.predict(X_test)
# 计算均方误差(MSE)来评估模型在测试集上的性能
mse = mean_squared_error(y_test, y_pred)
print("均方误差(MSE):", mse)
# 计算决定系数(R² 分数)来进一步评估模型拟合优度
r2 = r2_score(y_test, y_pred)
print("决定系数(R² 分数):", r2)
最后分别使用均方误差(MSE)和决定系数(R² 分数)这两个常见的回归评估指标来衡量模型在测试集上的性能表现,帮助了解模型对糖尿病相关指标预测的准确程度和拟合效果.
先标准化鸢尾花数据,接着使用支持向量机分类器对手鸢尾花种类进行分类.
from sklearn.datasets import load_iris
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
pipeline = Pipeline([
('scaler', StandardScaler()),
('classifier', SVC())
])
# 在训练集上训练模型
pipeline.fit(X_train, y_train)
# 在测试集上进行预测
y_pred = pipeline.predict(X_test)
# 计算准确率来评估模型在测试集上的性能
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)
先对数据进行标准化,再使用 K-Means 算法对手写数字图像数据进行聚类,这里简单地假设聚为** 10 类**.
from sklearn.datasets import load_digits
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.model_selection import train_test_split
# 加载手写数字数据集
digits = load_digits()
X = digits.data
# 划分训练集和测试集(在聚类场景下,划分训练集更多是一种常规操作示例,实际聚类分析中根据具体需求而定)
X_train, X_test = train_test_split(X, test_size=0.2, random_state=42)
pipeline = Pipeline([
('scaler', StandardScaler()),
('clusterer', KMeans(n_clusters=10)) # 假设分为10类,因为手写数字有0-9
])
# 在训练集(这里可看作全部数据用于聚类学习的示例情况)上进行聚类训练
pipeline.fit(X_train)
# 获取聚类标签
cluster_labels = pipeline['clusterer'].labels_
# 简单打印测试集上部分数据的聚类标签示例
print("测试集部分数据的聚类标签示例:")
print(cluster_labels[:10])
注:上面的示例我在本机的 sckilit-learn 1.5.2 版本上都运行通过.
Pipeline给我们的模型训练带来了便利, 。
不过,为了用好Pipeline,使用时有些地方需要我们特别注意.
首先是步骤顺序,数据会按照步骤的顺序依次进行处理.
例如,如果你要先进行特征选择,然后进行数据标准化,那么你需要将特征选择步骤放在标准化步骤之前。如果顺序错误,可能会导致模型性能下降或者无法正常运行.
其次,各个步骤的接口兼容性也很重要,Pipeline中的每个步骤都需要满足一定的接口要求.
对于数据预处理步骤(转换器),需要实现fit和transform(或者fit_transform)方法; 。
对于模型训练步骤(估计器),需要实现fit方法.
如果自定义的步骤没有正确实现这些方法,流水线在运行时会出现错误.
最后,使用Pipeline进行参数调整时,需要注意参数的命名.
在Pipeline中,参数的名称是由步骤名称和实际参数名称组合而成的.
例如,如果你有一个名为scaler的标准化步骤,其中有一个参数with_mean,那么在参数调整时,参数名称应该是scaler__with_mean.
这种命名方式可以确保正确地调整每个步骤中的参数.
最后此篇关于scikit-learn中的Pipeline:构建高效、可维护的机器学习流程的文章就讲到这里了,如果你想了解更多关于scikit-learn中的Pipeline:构建高效、可维护的机器学习流程的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
基本上,我的问题是,由于无监督学习是机器学习的一种,是否需要机器“学习”的某些方面并根据其发现进行改进?例如,如果开发了一种算法来获取未标记的图像并找到它们之间的关联,那么它是否需要根据这些关联来改进
生成模型和判别模型似乎可以学习条件 P(x|y) 和联合 P(x,y) 概率分布。但从根本上讲,我无法说服自己“学习概率分布”意味着什么。 最佳答案 这意味着您的模型要么充当训练样本的分布估计器,要么
是否有类似于 的 scikit-learn 方法/类元成本 在 Weka 或其他实用程序中实现的算法以执行常量敏感分析? 最佳答案 不,没有。部分分类器提供 class_weight和 sample_
是否Scikit-learn支持迁移学习?请检查以下代码。 型号 clf由 fit(X,y) 获取 jar 头型号clf2在clf的基础上学习和转移学习 fit(X2,y2) ? >>> from s
我发现使用相同数据的两种交叉验证技术之间的分类性能存在差异。我想知道是否有人可以阐明这一点。 方法一:cross_validation.train_test_split 方法 2:分层折叠。 具有相同
我正在查看 scikit-learn 文档中的这个示例:http://scikit-learn.org/0.18/auto_examples/model_selection/plot_nested_c
我想训练一个具有很多标称属性的数据集。我从一些帖子中注意到,要转换标称属性必须将它们转换为重复的二进制特征。另外据我所知,这样做在概念上会使数据集稀疏。我也知道 scikit-learn 使用稀疏矩阵
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
有没有办法让 scikit-learn 中的 fit 方法有一个进度条? 是否可以包含自定义的类似 Pyprind 的内容? ? 最佳答案 如果您使用 verbose=1 初始化模型调用前 fit你应
我正在使用基于 rlglue 的 python-rl q 学习框架。 我的理解是,随着情节的发展,算法会收敛到一个最优策略(这是一个映射,说明在什么状态下采取什么行动)。 问题 1:这是否意味着经过若
我正在尝试使用 grisSearchCV 在 scikit-learn 中拟合一些模型,并且我想使用“一个标准错误”规则来选择最佳模型,即从分数在 1 以内的模型子集中选择最简约的模型最好成绩的标准误
我正在尝试离散数据以进行分类。它们的值是字符串,我将它们转换为数字 0,1,2,3。 这就是数据的样子(pandas 数据框)。我已将数据帧拆分为 dataLabel 和 dataFeatures L
每当我开始拥有更多的类(1000 或更多)时,MultinominalNB 就会变得非常慢并且需要 GB 的 RAM。对于所有支持 .partial_fit()(SGDClassifier、Perce
我需要使用感知器算法来研究一些非线性可分数据集的学习率和渐近误差。 为了做到这一点,我需要了解构造函数的一些参数。我花了很多时间在谷歌上搜索它们,但我仍然不太明白它们的作用或如何使用它们。 给我带来更
我知道作为功能 ordinal data could be assigned arbitrary numbers and OneHotEncoding could be done for catego
这是一个示例,其中有逐步的过程使系统学习并对输入数据进行分类。 它对给定的 5 个数据集域进行了正确分类。此外,它还对停用词进行分类。 例如 输入:docs_new = ['上帝就是爱', '什么在哪
我有一个 scikit-learn 模型,它简化了一点,如下所示: clf1 = RandomForestClassifier() clf1.fit(data_training, non_binary
我是一名优秀的程序员,十分优秀!